

What is knowable about past demography? - The limited scope of genomic data analysis.

Janeesh Kaur Bansal¹, Robert Verity², Richard Alan Nichols¹

School of Biological and Behavioural Sciences, Queen Mary University of London, London UK¹ Department of Infectious Disease Epidemiology, Imperial College London, St Mary's Campus, London UK²

j.k.bansal@qmul.ac.uk janeeshbansal.github.io

Introduction

Demographic inference tools (e.g. MSMC2) can reveal a population's history. However, the signal produced by the analysis of a **genomic sample from a** structured population can be mistaken for a bottleneck [1, 2].

So, is your inferred population crash actually evidence of population structure?

We provide simple guidelines to help decide.

Methods

MSMC2 Demographic inference [5]

Don't get misled – quantifying the distortions of N_e estimates produced by population substructure

Here we derive simple formulae describing the false history of a recent crash in population size produced by population substructure.

An **ODE** provides the full **shape** of the curve.

The simple rules and the black curve accurately describe the coalescent rates (equivalent to $1/2N_e$) in the simulations of the subdivided populations that generated these data – so mathematical models and simulations agree. However, notice that the algorithm for inferring N_e shows systematic deviations from this curve.

More promisingly, the estimates from the recent past can be more readily interpreted.

OVERALL: Any one curve could be the result of population structure displaying changes in N_e , however an evolutionary geneticist can make use of their **knowledge of biologically reasonable parameter values** (m, d, N) to distinguish between the different interpretations.

Distinguishing between bottleneck and substructure

Formally, this idea can be implemented by **Approximate Bayesian Computation** to distinguish between the two cases. It will require informative priors based on the timing and size of population decline and subdivision for the specific model system.

Conclusions

The effect of population substructure has straightforward effects on the **shape** of the N_e curve in recent time.

Inference tools overestimate the ancestral coalescence rate – but why?

Idea in action – ABC and informative priors

References

[1] Mazet O, Rodríguez W, Chikhi L. Demographic inference using genetic data from a single individual: Separating population size variation from population structure. Theoretical

[4] Kelleher J, Thornton KR, Ashander J, Ralph PL. Efficient pedigree recording for fast population genetics simulation. PLoS computational biology. 2018 Nov 1;14(11):e1006581.

[5] Schiffels S, Wang K. MSMC and MSMC2: the multiple sequentially markovian coalescent. InStatistical population genomics 2020 (pp. 147-165). Humana